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Abstract. We obtain the exact generating function for a class of self-avoiding polygons on 
the honeycomb lattice which are convex in one of the three lattice directions. It is shown 
that the critical exponent (Y of these unidirectional-convex polygons is 5 .  

The exact enumeration of self-avoiding polygons on a lattice has remained to this date 
an outstanding unsolved problem in lattice statistics. Let a, be the number of topologi- 
cally distinct self-avoiding polygons (SAP) having n sides that can be embedded on a 
d-dimensional lattice. The exact enumeration of a, concerns with the closed-form 
evaluation of the generating function 

G(x)  = 1 a,x" 
n 

and the investigation of the singular behaviour 

G ( x ) ~ A ( x , - x ) ' - "  ( 2 )  
from which one obtains the critical point x, and the critical exponent a. 

The evaluation of the generating function G(x)  for true self-avoiding polygons has 
remained elusive for any d 2 lattices. However, it has been proven possible to evaluate 
the generating functions for restricted classes of polygons. For the square lattice, for 
example, it has been possible to evaluate G(x)  for the staircase (Temperley 1956, 
Polya 1969, Lin et a1 1987), convex (Delest and Viennot 1984, Guttmann and Enting 
1988b, Lin and Chang 1988, Kim 1988), and row-convex (Temperley 1956, Brak e? a1 
1990) polygons. For the purpose of regarding restricted classes of polygons as approxi- 
mations to the true SAP, the honeycomb lattice is of particular interest. The exact values 
of the honeycomb critical point and critical exponent are now known (Nienhuis 1982, 
1984, Guttmann and Enting 1988a, Enting and Guttmann 1989) to be 

xc= 1 -a/2 CY = 1/2. (3) 
On the other hand, however, the only restricted class that has previously been exactly 
solved for the honeycomb lattice is that of a certain class of polygons convex on the 
'brick-wall' lattice (Guttman and Enting 1988b, Lin and Chang 1988) with a = 4, which 
have no natural convexity interpretation on the honeycomb lattice (Enting and 
Guttmann 1989). To complete the description, we consider in this paper SAP on the 
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honeycomb lattice which possess a genuine convexity meaning. Specifically, we obtain 
the exact solution of the generating function for SAP which are convex in one of the 
three lattice directions, presumably a class of polygons which are closer to the true 
SAP than those of the row-convex polygons for the square lattice. 

Consider polygons drawn on the honeycomb lattice as shown in figure 1. The edges 
of a polygon are labelled by x , y ,  or z, such that all edges with the same label are 
parallel to the same direction. We define a polygon embedded on the lattice to be 
convex if all straight lines drawn on the dual lattice intersect the polygon at most 
twice. Thus, the polygon in figure l ( a )  is convex, while the one in figure 1 ( b )  is not. 
In the latter case, some lines on the dual lattice perpendicular to lattice edges labelled 
y and z cut the polygon at four points. By analogy with the definition of row-convex 
polygons of the square lattice (Brak et a1 1990), we therefore define unidirectional- 
convex polygons as the ones for which the convexity property holds in one of the 
three lattice directions, namely, all lines on the dual lattice perpendicular to lattice 
edges in one direction cut the polygon at at most two points. Thus, the polygon in 
figure 1( b )  is unidirectional-convex, since all dual lattice lines perpendicular to the 
edges labelled x possess this property. We now consider the generating function of 
these unidirectional-convex polygons. 

It is convenient for our purposes to redraw the honeycomb lattice in the form of 
a 'brick-wall' lattice as shown in figure 2 ,  with the edges labelling x pointing in the 
horizontal direction. We consider now more generally the generating function 

where almn is the number of topologically distinct unidirectional-convex polygons with 
1, m, n edges labelled respectively by x, y ,  z. Clearly, (4) reduces to (1) by setting 
x = y = z. Following Temperley (1956) we write 

where g , ( x ;  y,  z) is the generating function for unidirectional-convex polygons whose 
left-most column contains an area of exactly 2 r  squares. By extending an argument 
used by Temperley (1956) for the square lattice to the present case, it is not difficult 
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Figure 1. Polygons on the honeycomb lattice. ( a )  Convex polygon. ( b )  Unidirectional- 
convex polygon. 
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to see that the generating function g ,  satisfies the relation 

I I I I 
I I I I 2 
I I I I 
1 x 1  1 x 1  

Y z Y z Y 
X X - -- - 

where 

A (  r, s )  = min( r, s) cy = y-2+ z-2 p = ( y z ) - ' .  

Here, the first term x2(yz)* '  on the RHS of (6) takes into account the polygon of the 
shape of precisely one column of 2r squares, and the term g,  takes into account those 
polygons whose left-most column contains 2r squares and the next column contains 
2s squares. The coefficient of gs in (6) is obtained by analysing corrections to perimeter 
weights when two columns of squares are in touch with each other, which can happen 
in r + s different positions. 

Writing 

AF, F, - (,VZ)*F,-I (7)  

for any function F, and taking A2 on both sides of (6), one obtains 

I I 
I I 
I I 

I _ _  - I 
I 1 
I I 

I 
L--J 

Y 

z 
I X 

where 

a = (xyz)2(  1 - y ' ) (  1 - z') 

b = x 2 ( 1  - y 2 z 2 ) ( y 2 + z 2 - 2 y 2 z 2 )  

c = x2( 1 - y * z * y .  

A2(gr+4-2gr+3+gr+>) = ( a - b +  c ) g , + ~ - ( 2 ~ - b ) g r , , + a g , + ,  (9) 

The infinite sums in (8) are eliminated by considering its double difference 

which becomes, after using ( 7 )  in the LHS, 

g r + 4 - ~ g r + 3 +  ugr+2- u ( y z ) 2 g r + ,  + (yz)'gr = O  r =  1,2,3,. . . (10) 

I I 
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where 

U = 2( 1 +y2z2)  + x2( 1 - y 2 ) (  1 - z2) 

U = 1 +4y2z2+y424+ x2[4y2z2 - (1 +y,z’)(y’+ z2)]. 

We further introduce the generating function 
cc 

A A ) =  c & - - ‘  
r = l  

so that 

Guc(x;  y ,  2 )  = g(1).  (12) 

Multiplying (10) by A - ( r t 4 )  and summing over r from 1 to CO, one obtains after some 
steps the following explicit expression for g(A): 

g(A) = N ( h ) / D ( A )  (13 )  
where 

N ( A )  = ( A 3  - u A * +  U A  - uy2z2)gI + ( A 2 -  UA + v)g2+ ( A  - u)g3+g4 

D(A) = A 4  - UA + U A  - uy2z2A +y4z4 

= ( A  - A , ) ( A  - A 2 ) ( A  - A 3 ) (  A - A4) .  

Here, the four roots of D ( A )  are 

A I  = [ B + + e ] / 2  

A , = [ B, - -]/ 2 

A 3  = [B-+-]/2 

A 4  = [B-  --]/2 

where 

B , = ( u * f i )  

F = x2[4( 1 - y 2 ~ 2 ) 2  + x2( 1 - y2)’ (  1 - z’)’]. 

The partial fraction expansion of (13)  yields 

where A, are constants to be determined from ‘boundary’ conditions, and the complete 
determination of g(A ) requires an explicit knowledge of g,  , g,, g3 and g4. 

Writing ( A  -A, ) - ’  =Z?=, A-‘A;-’ and comparing (15) with ( l l ) ,  we obtain 
4 

g, = A,AL-’. 
n=1  

(16) 

It is easy to see that, for small x, y ,  z, we have A , ,  A 3  = O( 1) and A 2 ,  A 4  = O ( y 2 z 2 ) .  Now 
by definition g, = it follows from (16) that we must have 

Al=A3=O (17) 

g(A 1 = A , / ( A  + & / ( A  -A4). (18) 

giving rise to two boundary conditions, and 
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The remaining two boundary conditions are obtained by writing out (6) explicitly for 
r = 1,2.  This leads to, after using (1 l) ,  

g, = x2[y2z2+ ( y 2 +  z 2  - l ) g ( l )  - g’( l ) l  
g , = x  2 4 4  y z +x2(1 -y2)(1 -z2)g,+x2[(1+y2z2)(y2+z2)-2]g(1)-x2g’(1).  

(19) 

Substituting (18) and 

gl= g2 = A2A2 + A 4 A 4  (20) 

obtained from (16) into (19), we now have two equations containing the two unknowns 
A2 and A4. Using the computer algebra program REDUCE (Hearn 1968, Stauffer et al 
1989) to solve these equations, we obtain 

A2=[(1-y2z2)/8D](B1+ B~X’IF’ ’~ )  
(21) 

A 4 =  [ ( l  - y 2 z 2 ) / 8 D ] ( B l  - B2x2/F1”) 
where 

D = (y2+ z’)[ 1 +2(y2+ 2 2 )  +y4+ z4-4y2z2(y2+ 2 2 )  -y2z2(2y4+3y2z2+2z4) 

+2y4z4(y2+z’)+y4z4(y2+z2)2]+x2y2z2[1 -(y2+z2)2(1 -y2z2)] (22) 

Bj = aj+ b j S 1 ’ 2 + ( ~ j + d j S ’ ’ 2 ) T 1 ’ z / [ 2 ( l  +y2Z2)+X2(1 -y2) ( l  - z 2 ) ]  

with 

j = 1 , 2  

s = 1 - 2(x2y2+ y2z2+ x2z’) - 8x2y2z’S x4y4+ y4z4+ x4z4- 2x2y2z2(x2+ y 2  + 22)  

T = 2 ( 1  -y2z2)2+2x2[2-(y2+z2)(1 + y 2 z 2 ) + 2 y 4 z 4 ~ + x 4 ( i  -y2)2(i  - z 2 ) 2  

a, = x’( 1 - y’z2)[ -1 - 5 ( y 2  + 2’) - 3(y2 + z2)2+y6+ z6+ 5(y4z2 +y2z4) 

+ 2( 1 - y 2 z 2 ) S 1 ”  

+ 5 y 2 z 2 ( y z  + z 2 ) 2  + y 2 ~ 2 ( y 2  + z213] 

- x 4 ( y 2 +  z 2 - y 4 -  z4)[1 - ( y 2 +  z2)2(1 - y 2 z 2 ) 1  
b, = -x2( 1 - y 2  - z 2 ) [  1 - (y’ + z’)’( 1 -y2z’)] 

c, = 2(y2 + z’)( 1 +y2+ z2)( 1 -y2z2)2+x’[ 1 + 5 ( $ +  2 2 )  +y4+ 5y2z*+ z4 - 3(y6+ z6) 

- 1 2 y 2 ~ 2 ( ~ 2 +  z’) -6y2z2(y2+ ~ ’ ) ’ + 2 y ~ ~ ~ ( y ’ +  Z ~ ) ( Y ~ + ~ ~ ~ Z ~ +  z4) 

+5y4z4(y2+ z2)2+y4z4(y4+ z ‘ ) ~ ]  

+(x4y2+z2-y4-z4)[1 - (y2+z2)2 (1  - y 2 z 2 ) 1  
dl = - 2 ( y 2 + ~ 2 ) ( 1 + y 2 + ~ 2 ) ( 1  - y 2 z 2 ) - b l  

a, = -2( 1 + y 2  + z’)( 1 + 3 y 2  + 3 z 2 ) (  1 - Y’z’)~ + x2( 1 - y 2 z 2 ) [  -1 - 6(y2 + z’) 

+ 2 ( y 4 + z 4 ) + 3 y 2 z 2 + 6 ( y 6 + ~ 6 ) +  i7(y4z2+y2z4) - - ( y ’ + ~ ’ ) ~  

+y4Z8+4y6z6+y4z4(y2+ z 2 ) 3 ~  -x4(1 - y 2 ) ( ~  - 2 2 )  

x ( y 2  + z 2  - y4 - z4)[1 - ( y 2  + z 2 ) 2 (  1 - y2z2)1 

- 5 ( y 8 z 2 + y 2 Z 8 )  - 17(y6z4+y4z6) -y’Oz2 - ~ 2 Z 1 0 + y 8 Z 4  
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b2 = -2[1- ( y 2 +  z2)’](1 -Y’z’)~+ (1 -y’)( 1 -Z2)bl 

c2 = 2( 1 -y2z2)2[ 1 + 5(y2+ z2) +3(y4+ z4) + 7y’z2-y6- z6+ 2(y4z2+y2z4) 

+2y2z2(y2+ z’)~]+x’ [~ +6(y2+z2) -4(y4+y2z2+ z4) 

-6(y6+z6) - 1 9 ( ~ 4 ~ 2 + ~ 2 ~ 4 ) + 3 ( ~ 8 + ~ 8 ) +  10(y6Z2+y2Z6) 

+ 17y4z4+9(y8z’+y2z8)+ 20(y6z4+y4z6) - 2(y’oz2+y2z’o) 

- y ~ z ” + y ~ ~ z ~ + y ~ z ’ ~ + 4 y ~ z ~ + y ~ z ~ ( y ~ +  z’)’] 

-tX4(1 - y 2 ) ( ~  -z2)(y2+z2-y4-z4)[1 - ( ~ ’ + Z ~ ) ~ ( I  -Y’Z’)] 

- l l (y8z4+y4z8) - 18y6z6-4(y10z4+y4z’0) -6(y8z6+y6z8) -yI2z4 

d,  = 2(1 -y2z2)(1 - y 2  - z2)[1 - ( y 2 +  z ~ ) ~ ]  - (1 - y2 ) ( l  -z2)bl.  

Substituting (21) into (18) and specializing the result to A = 1, we finally obtain the 
following explicit expression for the generating function: 

Gvc(x; Y ,  Z) = g(1) 
= (1 - y2z2)( a + bS’I2)/4D + (1 -y2z2) 

x ( ~ + d S ” ~ ) T ’ ” / 4 D [ 2 ( 1 + y ~ z ’ ) + x ~ ( l  -y2)(1 -z’)] (23) 
where 
a =  1 + 4 ( y 2 + ~ 2 ) + 3 y 4 + 4 y 2 ~ 2 + 3 ~ 4  

-8y2z2(y’+ z’) -6y2z2(y4+ z4) - 11y4z4+4y4z4(y2+ z’) 

+3y4z4(y’+z2)’+x’[y’+ z2-4y2z2(y2+z2) -y6-z6 

+ y 2 z 2 ( y 6 + z 6 ) + 5 y 4 ~ 4 ( y 2 + ~ 2 ) ]  

6 = (1 - y’z‘)[ 1 - (y’+ z’)’] 

c = -( 1 -y2z’)[1 +4(y2+ z2) + 3y4+ 7y2z2+ 3z4 

+ 4 y ~ z 2 ( y 2 + z ’ ) + y 2 z 2 ( y 2 + z 2 ) 2 + X 2 ( y 2 + Z 2 ) ( 1  -y4-z4)] 

d = -1 + y 4 + ~ 2 ~ 2 + ~ 4 - y 2 ~ 2 ( y 2 + ~ 2 ) 2 .  
In the special case of x = y = z, (23) reduces to 

GUc(x)= (1 - x ~ ) N / ~ x ~ ( ~ - x ~ + x ~ ) D  
= ~ ~ + 3 ~ ~ ~ + 2 ~ ~ ~ + 1 2 ~ ~ ~ + 1 8 ~ ~ ~ + 6 3 ~ ’ ~ + .  . . 

where 
N = a + bS’ /2+  cT’/‘+ d(ST)”2 
D = 2 +  8x2+ 5x4- 1 6 ~ ~ -  18x8+8x’O+ 1 2 ~ ’ ’  

with 
s = (1  + x’)( 1 - 3x2) 

T = (1 - x4)[( 1 - x2)(2 +6x2+ x4+ x6) + 2( 1 + x’)S’’~] 

U = 2+ 1 5 ~ ’  + 17x4 -36x6-38x8+ 33x’O+ 7x12 - 1 6 ~ ’ ~ + 2 4 ~ ’ ~  

b = 2+  X’ - 1Ox4-4x6+ 8x8 - x ’ O + ~ X ’ ~  

c =  -1-7x‘-7x4+7x6+8x8 

d = -1 +3x4-4x8. 

Comparison of (24) with the series expansions for unrestricted polygons (Enting and 
Guttmann 1989) shows that the first difference occurs at xI8. 
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The singular part of the generating function GUc(x) is that given by S1l2 occurring 
at xf = f . Hence we obtain the critical exponent a = +.  This exponent is the same as 
that of the row-convex polygons on the square lattice (Brak et a1 1990), and is to be 
compared with the value a = 4  for the class of SAP convex on the ‘brick wall’ lattice 
(Guttmann and Enting 19886, Lin and Chang 1988) and the value a =; for the true 
SAP (Nienhuis 1982, 1984). Thus, despite the fact that the class of polygons considered 
here is closer to the true SAP than those previously considered, it belongs to the same 
universality class as that of the square lattice row-convex polygons. 

Expanding the generating function about the singularity, we obtain 

GUc(x)=co+cj(l  -3X2)1’2+C2(l -3X2)+C3(l - 3 ~ ~ ) ~ / ’ + 0 ( 1  - 3 ~ ~ ) ~  (25) 

where 

CO = 8[ 13 - 4(7)’’2]/ 171 

= 0.1 13 076. . . 

c1 =32[-179 (21)’/’+ 140 (3)’/’]/68 229 

= -0.270 99. . . 

~2 =2[2747 479 -707824 (7)’/’]/9074457 

= 0.192795.. . 

~3 =4[-80 905 507(21)1’2+ 180 290 404(3)’/’]/3620 708 343 

= -0.064 61. . . , 
If we write as in (1) 

GUc(x) = 1 a,x2“ 
n 

the asymptotic behaviour of a, for large n is then given by 

a, = 3nn-3/2.rr-1/2 [A+B/n+O(n-’ ) I  

where 

A=-c1/2=0.153495 . . .  
B=-3~1/16+3~3/4=0.002353. .  . 
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